

Hybridization modelling (power-to-hydrogen)

Session 17: Digital solutions for operation and maintenance of existing hydropower MESSE CONGRESS GRAZ (MCG), AUSTRIA, 18 - 20 NOVEMBER, 2024

Sergio Rodríguez Carro Alejandro Martín Crespo Jesús Samaniego Muñoz Paula Hernampérez Manso

148

Ongoing projects

International projects

Projects with companies

National and Regional projects

Customers

209

Staff

 $37 PhD's$

CARTIF Technology Centre

47151 Valladolid, España

TECHNOLOGICAL CENTER- technic knowledge FOUNDATION - private non-profit

IN ENERGY DIVISION:

Why Hybridisation?

- ➢**Key vector for decarbonizing** sectors that are difficult to electrify (transport, industry).
- ➢Functions as long-term **storage and a bridge** between renewable production and energy demand.

➢Projects around the world demonstrate **the viability** and economic competitiveness of hybrid systems.

➢In Europe, the **D-Hydroflex** project modernizes hydroelectric plants by integrating hybrid hydrogen systems.

- ➢**Manage** the increasing integration of renewables and the variability of electrical demand.
- ➢Grid flexibility is crucial to **stabilize systems** with intermittent sources.

Relevance of Hydroelectric Plants

- ➢**Strategic nodes in hybrid systems**, combining generation and hydrogen storage.
- >They leverage water resources and renewable surpluses to **maximize grid flexibility and stability**.

Hybridisation Two Scenarios

- ➢ **Objective:** Evaluate the profitability of integrating hydrogen production and storage systems in hydroelectric plants.
- ➢ **Common Systems:** Photovoltaic plant and hydrogen system (electrolyzer and storage).
- ➢ **Key Differences:** Technology and scale of the selected hydroelectric plants.

Small hydroelectric power plant (SCENARIO 1)

- o Power: **35 kW.**
- o Located at a Drinking **WaterTreatment Plant** (DWTP).
- o Implements a **Pump as Turbine (PaT)** to recover energy from a pressure reducing valve.
- o Constant and **continuous water flow**, generating stable energy.
- o **Optimizes resource** use in the industrial sector.

Seasional hydroelectric power plant (SCENARIO 2)

- o **2.1 MW** dam-peak hydroelectric plant.
- o Average annual production of **2 GWh**.
- o Reservoir of **102.6 hm³** in a dry tropical climate.
- o **Operates seasonally with a Francis turbine (flows from 0.8 to 4.8 m³/s).**
- o Hybridization allows storing and producing energy during **periods of low water demand or grid injection restrictions.**

Parameters and components

PaTTurbine *(Scenario 1)*

Based on operational data, fitted with a 2nddegree polynomial Minimum Operating Flow: **0.119 m³/s**

Photovoltaic Solar System

Capacity: **500 kW** Approximately 4,500 m² of panels to complement hydroelectric generation.

Hydrogen Storage System

3 stage H₂ compressor post-electrolyzer **5 m³ tank** with a maximum pressure of **200 bar**

PEM Fuel Cell

Electrical Power: **250 kW** Proton Exchange Membrane

Turbine

(Scenario 2)

Obtained through 10thdegree polynomial ridge regression Operating Flow: **0.8 and 4.8 m³/s**

High-Pressure Francis Electrolyzer

Nominal Power: **500 kW** Hydrogen Production: **243.75 kg/h** Configuration: 20 electrolyzer of 25 kW each

Operational conditions

General Objective:

Operate components to maximize sales and ensure optimal system performance.

Control Rules:

➢**PriceThresholds:**

Stop Price: €60/MWh. Injection stops, and hydrogen is produced.

Activation Price: €130/MWh. The PEM fuel cell is activated to sell electricity.

➢**Compliance with Grid Restrictions:** Ensure that energy is not injected when there are operator prohibitions.

D-HYDROFLEX PROJECT **7**

Electricity Market:

➢**Use of Spain's SPOT prices** to simulate real conditions.

➢**Hourly wholesale market prices** determine control and operation strategies.

Grid Restrictions:

➢**Operator signals** allow or prohibit the injection of energy into the grid.

➢**Prohibitions** due to excess renewable energy, low demand, maintenance, etc.

➢**During prohibitions**, the system produces and stores hydrogen for future use.

Model

TRNSYS has been used to model the complete system, implementing the control strategies.

Three main systems: **solar generation, hydraulic generation** with the two turbines**, and the hydrogen system.**

Parametric variation of critical design variables: **hydrogen storage capacity, photovoltaic production capacity, the configuration of strings and arrays of the solar field, or the number of electrolyzers**

Results

Power production (SCENARIO 1)

- \triangleright It allows understanding the operational dynamics of the micro-hydroelectric system.
- \triangleright It shows the variability and interaction with hydrogen storage.

Power production (SCENARIO 2)

- \triangleright It demonstrates greater stability in hydraulic generation.
- \triangleright It reflects the influence of the larger capacity and size of the plant compared to Scenario 1.

Evaluation of Scenarios

Evaluated KPIs:

- ➢ **Energy Sold to the Grid:** Total energy that each hybrid system exports to the electrical system, including hydroelectric generation, photovoltaic generation, and production from the PEM fuel cell.
- ➢ **Revenue from Energy Sales**: Economic benefits obtained from the sale of energy, calculated according to the SPOT prices of the electricity market.

REVENUE FROM ENERGY SALES (K€) ENERGY SOLD TO THE GRID (MWH)

D-HYDROFLEX PROJECT AND INTERNATIONAL TRANSPORTED TO A 10

Evaluation of Scenarios

Evaluated KPIs:

- ➢ **Energy Sold vs. Potentially Generable Energy:** Percentage of energy actually sold compared to the theoretical maximum generation capacity, indicating operational efficiency.
- ➢ **Distribution of Generated Energy:** Proportion of energy allocated to sales, self-consumption, or storage as hydrogen, reflecting operational decisions to optimize resources.

Conclusions

Energy Efficiency and Optimization:

➢Both scenarios show **high efficiency in the utilization of the generated energy**.

➢Reflects effective management and distribution of the available energy resources

Impact of the Scale of the Hydroelectric Plant:

➢**The capacity of the plant** significantly influences the economic results of hybridization with hydrogen systems.

➢**Scenario 2** demonstrates that largerscale plants increase the energy sold and the revenues, making **better use of economic benefits**

Conclusions

Diversification and Complementarity of Renewable Sources:

➢**Hybridization facilitates adaptation** to the specific characteristics of each plant.

➢**Scenario 1: Photovoltaic energy complements the micro-hydroelectric system.**

➢Scenario 2**: The seasonal hydroelectric plant benefits from solar contribution** during periods of low hydraulic generation.

Key Role of Hydrogen:

➢**Allows storing energy surpluses and adds flexibility to the system.**

➢**Improves the stability and overall efficiency of the hybrid system.**

Applicability and Environmental Benefits

➢Strategy applicable from **small industrial** installations **to large energy infrastructures.**

➢**Contributes to reducing greenhouse gas emissions and promotes sustainable development**.

Next steps

Optimization

Perform a **parametric optimization** to determine the **optimal sizes** of the involved technologies, considering **CAPEX and OPEX** **Real-Time Control**

Figure

Develop/implement **a real-time control system** that connects the hydroelectric plant with the optimization algorithms

Explore various **turbine technologies** and types of hydroelectric plants to evaluate their **impact.**

Implementation and Validation

Implement pilot projects to validate theoretical results and adapt models to realworld conditions.

Technologies

Thank you!

Sergio Rodríguez Carro / CARTIF

sercar@cartif.es

 D -HYDRØSFLEX

D-HYDROFLEX project has received funding from the European Union's HORIZON Research and Innovation Action under Grant agreement No 101122357

CARTIF

どこeDF

 $FRSADA$

HELLENIC REPUBLIC

OCINTECH

AUCL

National and Kapodistrian University of Athens

ILI UBITECH

TASGA Renovables

S-TAURON

 $(\Delta_{E_{H}})$

NOVA

AIDEA

I: UBITECH

 $\bigoplus_{\mathsf{energy} \mathsf{lab}}$

INTEX PRIM

MINDS

E BUNIVERSITY OF

Wrocław University
of Science and Technology